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ABSTRACT

The main objective of the present article is tagtthe oscillatory behavior of conformable fractibigeneralized
Lienard equations. We obtain some new sufficientlitions that guarantee all solutions are oscillatdy using Riccati

transformation technique. Suitable examples areriesl in order to illustrate the effectiveness of obtained results.
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INTRODUCTION

Fractional calculus is nowadays one of the mostisitzely developing areas of mathematical analysisding
several definitions of fractional operators likeeRiann-Liouville, Caputo, and Grunwald-Letnikovhls been shown in
various studies that fractional-order models captpinenomena and properties that integer ordersectedlhese non-
integer derivatives have been widely applied ifedént branches such as application in a genagarighm, the planner in
signal processing, a tensile and flexural strenfitisorder materials in solid mechanics, biologd @hysics, we refer the
books [1,8,11,13,14,17].

Recently, a new fractional derivative called tlo@formable fractional derivative is introduced whis based on
the basic limit definition of the derivative in KIiig9]. There are many papers have devoted tocthrdformable fractional

derivative, see, for example [2,6,7], and the egiees cited therein.

In 1928, Lienard [10] investigated the sufficiewinditions for the occurrence of auto-oscillationghie system

governed by
"+ flx)x" +x = 0. (1.1)
In 2012, Matinfar et al. [12] solved the Lienarduation of the form
u' + flwu + g(w) = h(x). L

by differential transform method.

The Lienard equation is closely connected withRiagleigh equation. For a particular case of (In2jnely Van

der Pol equation for the choices #f(w) = e(u® — 1 ),g(w) =w andh(x) = 0. Van der Pol equation served as a

Impact Factor(JCC): 3.7985 - This article can be downloaded from www.impactjournals.us




[ 202 Vadivel Sadhasivam, Muthusamy Deepa & Kaleglurrahman Saherabanu |

nonlinear model of electronic oscillation. The Laeth equations are used to model the oscillatinguits emerging in

radio and vacuum tube technology.

In 2013, Zeghdoudi et al. [16] considered the sdakenard equations
i) = fx(0)i(@) + g(x(D).x(1) € R, o3

Abdullah [3,4] studied the oscillation criteria feecond-order nonlinear differential equations2016, Abdullah

[5] studied the oscillation of a class of Lienagliation of the form
B +(M)ED) +a(x(®) =01t =t (L4

wheref andg are continuously differentiable functions Bn

It seems that there has been no work done onai®mnable fractional nonlinear Lienard differehgguations.

The work along this line is of great interest arfual is the main motivation of our paper.

In this paper, we study the oscillatory behavibthe solutions of conformable fractional generadiz_ienard

equation of the form

T, (r(OT(x(0)) + £ (x(®)) (Tm[x[t]):]z +g(x(®) =0, t =t, (1.5)
whereT,, denote the conformable fractional derivative wéhpect taz, 0= e = 1.

We assume throughout this paper that :

(4,) 7(£) € C*([ty, ), (0,0) ), r(O)T,(x(2)) € C=([t,, ), (0, ) );

(A,) f(x(t)) and g (x(t) ) are continuously differentiable functions Bn

Note that if r(t) = 1, then the equation (1.5)ésluced to the new class, called the conformablkes aé Lienard

equation and in addition to that whan= 1, the equation (1.5) reduces to the Lienard eqndtict).

A nontrivial solutionx(t) of differential equation (1.5) is said to be dsddry if it has arbitrarily large zeros

otherwise it said to be nonoscillatory. The equaf{ib.5) is oscillatory if all its solutions are dktory.

This paper is organized as follows: In Sectionw®, recall the basic definitions of the conformafskectional
derivative. In Section 3, we present some new lasicih criteria for all solutions of generalizedebiard equation (1.5). In

Section 4, examples are provided to illustrateroain results.

2. PRELIMINARIES

In this section, we shall present some prelimimasults on conformable fractional derivative. Fivge shall start

with the definition.
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Definition: 2.1 [9] Given a functionf: [0, 2c) — . Then the conformable fractional derivativefobf ordera

is defined by
— 1 Flereea— &) _Fi
T, (f)(t) = lim,_,————

forall t = 0,a € (0,1]. I f is a-differentiable in somd0,a), a = 0, andlim, _, ,+ £ () exists, then

define
F2(0) = lim, Lo £ (2.

We will sometimes write? ‘@ () for T, (£)(2), to denote the conformable fractional derivativé§ of order

L.
Some Properties of Conformable Fractional Derivatie [9]:
Lete € (0,1] andf andg be a-differentiable at a poirt = 0.Then
(P,) TE(t?)=ptP “foralp € R
(P,) T,(A) =0, for all constant functionf () = 1.
(Py) T(fg) = fT.(g) + gT.(f)

(p4] T, (i) — ﬂfa':f}—f'fa':g}.

gz

(P-) If, in addition, f is differentiable, the, (f)(t) = t17* g (t).

3.MAIN RESULTS:

In this section, we establish several new suffic@nditions for the oscillation of solutions df%) based on the
Riccati transformation.

Theorem: 3.1.Assume tha(4,) — (A1) hold. If

. 1 -t I:m"_qjjlz
lirn ~ 45 — : - ————— |ds = oo 31
et f*”( s ':x':s:']lsr':x':s:')w:s}%}) o
and
e 7 (<0 (x(2)+r0 2 2))
oo “bp =(r(=))*

Then every solution of (1.5) is oscillatory.
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Proof:

Let x(£) be a nonoscillatory solution of (1.5) on the imedi{t,, 0 ). Without loss of generality, its solution can

be supposed such tha(t) = 0on [t;, 22). Define the generalized Riccati substitution

r[r( )T (=( r]']l}
W(tj = —W,t = ty. (3.3)

Thenw(t) is well defined.

() [ (T ()} £ () Ty () e (1T (00 Jer 0 2EEER)

T(w(9) = (a(x(2))°

o) = (0o (x(0) D) +r+‘f9§fm‘jg
“'*'*”f.i:::;:’"'ﬂ“““”"}[tww e
wi®) = (f”gj;) == (“’(’3 " (f]']g}]}] :.f—})

+t — rla)” 43

|:f| 2060 ) g (xle) ) 4ol r}ﬂ}

Integrating both sides of the above equation fipro t, we have

Y 5 (x(s)) gl () o) 2L ) ) ’
w(t] = wlt,) + _['t ( 5 = } w(s) + - () .1,( e ds
o sris) 265 (9) )l ) ) +r(1 2

(s
+ff _.S'E: al i) s fi_S'
rn( |If|x|3:|:|g|x|3}:|+r|3} j( 1) }

By using the hypothesis (3.1) implies there ekist= t, such that

w(t) =

f s i(f(x(sj)g(x(sj)+r(s) dg("("’"”)

sr(s)?
s
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X w(SJ+ ) d [ ()
> l(f(x(-?))g(x@)“” - )
Consider
o 080 | ( oy e
Qo) =[ ——— I(“‘““ el J—}]‘d"

then we havev(t) = @Q(t) = 0. Differentiating the above, we get

- 1(f[x(t))g[x(tj) oL [x“]))

Q'(z) =

t(r(0)°
X|| w(o) + (r(2)) y [ 5
2te1 (f[x{t])g (x(9) + r (=2 )
} |[f|x £))g () )+l :}ug[%ﬂ} I"r':}]z 2
N e (# f}j Q[t] + L |f.r’l:r; (£) ) glated)srl r]'—ug[ﬁlt\I }
|:flx r}jgl_x: r}:|+r t}ug[:ﬁlﬂ }
o t(w r}] [Q(tj]
Therefore,

e l(f(xw)g(x(ﬂ) +r() dg(x(t])) 0
((r(©)) O

Integrating both sides of this inequality framto ¢ for t = t, we get

ot (o) +r 2GR
i’ ee i 1
t[fr‘[.';]]‘ 2(t) Qv

By

since@(t) = 0. Thus

(3.5)
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s (1 (:)ax9) + (9 25 ))
lim - ds = ,
Fme t(r(s)) Q(ty)

Ly

which contradicts (3.2). Hence the differential &ipn (1.5) is oscillatory.
Theorem: 3.2.Assume tha(4,) — (A4,) hold.If

t = (f'x'fﬂg'x's-}:'+?"'f}a§ETﬂﬂ}

21—?;1.: = Cris))® ds = o (3.6)

Then every solution of (1.5) is oscillatory.
Proof:

Assume thaix(t) is a nonoscillatory solution of (1.5). Without $osf generality we may assume tie(it) is an

eventually positive solution of (1.5). Then theristst, = t, such thai(t) = Ofort = t,.

Consider the Riccati transformation

rET, (26
gix(e)}

u(t) = —

=t (3.7)

Then u(t) is well defined and differentiatirgtimes with respect to ‘t’, we have

—_gI:x':r}:l {r't}l" I_x'r}:l}+rl 1T ler}}l Lgl=e))
(giae()))®

Tu(t) =

(f[x[f])g(x(r]) e dﬂ[x(@))
(r®)’

u'(£) = t*71 (u() )2 4 opel

Integrating the above froiy, to £, we get

( (4()g(x()) + 7(3) dg[’"‘@)) ”
u(t) = u(ty) + f = ])2 (u(s))?ds + fsm_lds

sa- 1(f[x(s]}g[x(s]) L)% ("("’"”)
(r()°

(u(s))?ds + 271 j ds.

tn

uw}mm+f

Then for somet; = t;;, we have
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Eflxls}jlglx's'}:Hr's}M
u(®) > [ T ) o,
Let R(t) fort = t; by
. E .f |:x ':3}] |:x':s'::l:|-|-r" E)] ag[vl.s"_'l .
ro- oy Jwere >0

then we have:(t) = R(t) = 0. Differentiating (3.8), we get

gt ._,*’I:x':t}jl (x(e) ) +r(—=— gl:“lﬂ
R'(t) = (' ;ﬂjz }(u[fﬁ
eo=1( (i) gl (e) )20 (E agiﬁlﬂ
, SO OTT) ey

(r(2)

Thus

- (f[x(tj)g[x(f)) +7() H[x(ﬂ)) Hes
) = (R(t))?

Integrating the above inequality froty to £, R(t) = 0,we get

1 1

f - 1(f[x(53)9 (x(s)) + () %2 [*‘(5”)

g [’r(s]}: dsim %J

We conclude that

lim

E—*oo

= (1eNel) +r02GE))
f : ds < ——,
; [’r‘ (s) )‘ R(t,)

we obtain a contradiction to (3.6). This compleatesproof.

Theorem: 3.3.Assume tha(4;) — (4,) hold. If

lim ft Sﬂ_lgl._xkj'}jds

— = oo .
Pargel Flx(s)) (3.9)

and
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u.f[x'.s? }

({fl:-r's} } +7(=)
lim

t—oe “fp I__rlxs}jl

ds = 0, (3.10)

Then every solution of (1.5) is oscillatory.
Proof:

Suppose that x(t) is a nonoscillatory solution gugtion (1.5). We may assume without loss of gditeridat

x(t) # Owith t = ¢,. Define the function

$(8) = -

rlE T, (=())
s =
ety P

Theng(t) is well defined.

—flx r} {r't}l" Ix'r}]}+r'r}? ler}] T L F (e}
(fi=(e)))®

T.9(t) =

(F(xie) } -I-?"{t]a‘f(“ i .
( (#(0))" ) (e(®) + o7 %- (3.11)

¢'(t) =

Integrating the above frowy, to t, we have

H_:(:[f |:x':3} } +r|3}aﬂvlﬂ }

(ris))*

(B(s)?ds + [ s« €= g

p(t) = ‘Zb(tl}j + .rtis Flzla)

Now, using (3.9), we can chootg sufficiently large so that

(ff':rls}jl} +;.,.,3}'1f(n'.5) }

(ri2)®

$(B)2 [ - (¢(s))? ds.

Let us consideH (t) for t = t, by

e Ll[[f |ix|:3::|:|}=—|- rl:s}ﬂ:f';_‘:'ﬂi }

(r(a))*

H®) = - (¢())* ds. 1

Then we havep(t) = H(t) = 0. Differentiating (3.12), we obtain

i { I_zx':r} +r(t af(.. 2,
H'(t) = \r (r L}}) i }(qb(t))‘
'x_'-[lzflix':r} } +r( sju‘r[ﬁlﬂ }

(H())*

(r(s))*
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Therefore,

_1(0(’50—‘3)) r(t) f[ﬂm) H'(t)
(r(©)° = @O

Integrating fromt, to ¢ for t = t, with H(t) = 0, we

() + o LG

1 1
. ds = -,
J ()’ H(t;) H(t)
we conclude that
d (..'.sfl
|: fl:,rlsjl” +ris) i } 1
L4 PR _Jr‘_ |._?'"~3:':| ds < Hity)

This contradicts the assumption (3.10).Hence, tbefgs completed.
Theorem:3.4. Assume thai(Ay) — (A,) hold If for some functiond(t) € C*([t;, =), (0,20)), for all

sufficiently larget; = t; such that

2 (e )+ (F (2 (D))

i t & —
lim. , .. -rtn E(=)(r(2))2 ds =co @49
and
lim [¢ -1 8E8CE) (8'&)" trie)? ds = oo 3.14
e Uty Flx(s)) 48 ()52 (ler () +(Fx(£)))D ' G194

Then every solution of (1.5) is oscillatory.

Proof:

Let x(t) be a nonoscillatory solution of (1.5).Thtrere exists &, = t; such thatx (t) # Oforall t = £y

Without loss of generality, we may assume th@at) = 0 on the interval §;, oo)

Defining a generalized Riccati transformation by

() = —6(z) r'ﬁi‘j‘l';;m, t=t, (3.15)

Thenifi(t) is well defined and differentiating,

—f(=(e)) [t'-‘“é'njt}rlir]lr,x[x-ir}]+éI:r:-r,x[r-lir}ra[xiz}]_}]+ BOr(E) T, () ) F (2())x (£)
(r (x(e2) )"

T¥(t) =
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2 () £ (202 (£ (2(2)) )7)

) — 2 4 sy R0 a—1 8(0) glx(£))
Y'(t) = ( PRIEEE ) (W(t))*+d6'(e) o Tt ) (3.16)

and usingf ' (x) = k = @ wherek is a constant,

-1 Ly x 2 f T 2 2
5 ( (tj+[f[2(t)))j oo+ FOC@) )|,
50 (r(®) 2t==t (kr(8) + (f (x(9) )°)

w1 009G®) (@) @)
@) a8 (ke + (Fx0) ))

Integrating both sides of the above equation figro t, we get

P(t)

3

o+ F:— (kr(s) + (f(x(9) ) ]l(“‘”(‘g”z :_i(a’(s)(r(sj)‘ )) \d‘s

5(H(r(s))° kr(s) + (F(x()) )°

tpy

+f (o1 S () GO NCIO) MU Y
] FE) 45159 (kr(s) + (F(2() )?)

By (3.14), we have that

w[tj > J.r sl:t—'_(kr':s}+l__fl._x':s}:|:| }[(wtﬁj + &' ((ris)) ) ]li'i‘

Ey &(=)(ris) :IE 2 s'I_'-I:jkrI:s'} +r(=ls)) )1'}

Define a functiorM (t) for t = t; by

(o) = J7 o)) [(w(s) 4 SO ) ]ds, 317)

ty &() I:r':sjljlz 2 sﬂ_i[k?"(ﬂlﬂ:‘f |:x'i3:':| jz}

then we havelr(t) = M(t) = 0.

t57 (kr(8) + (F(x(9))°) () (r()° 2
I(#’(ﬂ + 21:“‘1( ) ]

M'(t) =

5O (r () kr(®) + (F(x(0))7)
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) . _-_[krl:r}+|;f|:x:r}:|:|z} [(M[ﬂ . : 5hjr}li"fr::|zf . ):]

50 (r()) 252 k() + (£ (2 () )7)

= -fkru O +(fl= ()] }

alr}lr.r} [M[t]] :
Hence
@ A el))) ' (3.18)
(e} (r()) (ME))®

Integrating (3.18) front, to t for t = ¢, we get

t sﬂ—'—[krl:s::"l";f':x':ﬂ:l:Iz} = - -

'Jrr‘_ & ':S}I:r':s'}jlz T M) - M)

sinceM (t) = 0. Therefore

lim
E— oo

J- (I{T‘[E] +(f(x(s)) ) ) de < i
3(s) [r [s]) M(t,)

by

which contradicts assumption (3.13), so (1.2) ©lladory. Hence the proof of the theorem is cortgle

4. EXAMPLES

Example 4.1Consider the conformable fractional differentialiation

1 1-2x

T-;(;T-E[x(t])) t s ( [x[t])) +(1+x) =0,t=t, (4.1)
Herec =% == f[x[ t)) _:.11;:;1} andg (x(t)) =1 + x> Now,

.1t (ris))®

lim - 45" — , ds

groa 4.er ( |Iflx'3}:Iglx'3}:|+r'3}—aﬂ“ =l })

_gﬂj {Sﬂds— —fszd5)—>mast—>m

and

s (£ () + 19 L5
. S

p

ds
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oot S
=lim [ s zds — oast — oo,
t—oe “Lp

Hence all the conditions of Theorem 3.1 are satisfiherefore, the differential equation (4.1)ssithatory.

Example 4.2Consider the fractional differential equation o tlype
T':(T': [x(t])) + cot[x(t]) (T': [x(t] )) —cot (x(t)) =0,t = t,.
B B B

Herea = % ,7(£) = 1, f(x(£)) = cot (x(t))andg (x(%)) = —cot (x(t)). Now,

T .o dglxa)
Eaa Vi l._xkﬂ]gl._xu]l:l+ru-}§_—v

Foo z
t—o " fp (r(2)

= lim [ 575 (—(cot (x(2))* + (cosec (x(s)))?) s

Z
, t ==
=lim, ftns zds — ooast — 0.

Therefore, Theorem 3.2 implies that the differdréguation (4.2) is oscillatory.

Example 4.3Consider the following conformable fractional difatial equation

T-:(%T-:[x[t])) +t(T-:[x[t]))‘ +t2=0,t =t,,

Hereg =§ ,r(t) =%,f(x[t]) =t and g[x[t]) = t%.

Now,

- £ goqalxlsd) o o t -2
lim [~ s ——<ds=1lim [* s7s>ds — wast = ®
= oo rn _fl._x -.3:' t—roo rn =

and
T _df(xa)] B .
CR {fl_xks]':l}z+rlms}a‘f e “alg2+2
lim [° li — = }r:i.':?=1izr1_|"r ?“’I:j—"}ds%mast%m.
t—oo "L I__r'Ls}II oo VB =

5

Hence the differential equation (4.3) is oscillstaonditions of Theorem 3.3 are verified.

Example 4.4Consider the conformable fractional differentialiation

n(%a(xm)) - zt(mx(t)))‘ ta=otzr, (@)

(4.2)

(4.3)
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ol | a3

Herea == ,r(t) =%, 5(t) =t* andf(x(t]) =g[:x(t]) = 2t. Now,

= (e () # (F(2(=)))%)

4 5
lim, . _r:: ds = lim _Ir:n ks =+ 453 ds — wast — @

& (=102 t oo
and
r =
, t o1 &gl (& () (r(=1)" . e 2 1
lim [* gemriisal=ten 9 C :I, —___ds =lim /[ st ———5ds — o as
t—om " Ip Flx(=)) 25728 (S er () +0F (2007 t—=oe “bp EeidsE
t—= oo,

By Theorem 3.4, Equation (4.4) is oscillatory.

Remark: All the results obtained in this paper can be edgeinto a forced generalized Lienard equation of the

form

T, (aOT.(y®)) + a(r@)e (T.(x@®)) + Fr@®) = e (®), t= ¢,

CONCLUSIONS

In this study, we have obtained some new osciltat@sults for some class of conformable fractiorailinear
Lienard differential equations by using Riccatihteijue. This work extends some of the results edkiting classical

literature [3,4,5] to the conformable fractionatea
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